GoDaddy has implemented large language models across their customer support infrastructure, particularly in their Digital Care team which handles over 60,000 customer contacts daily through messaging channels. Their journey implementing LLMs for customer support revealed several key operational insights: the need for both broad and task-specific prompts, the importance of structured outputs with proper validation, the challenges of prompt portability across models, the necessity of AI guardrails for safety, handling model latency and reliability issues, the complexity of memory management in conversations, the benefits of adaptive model selection, the nuances of implementing RAG effectively, optimizing data for RAG through techniques like Sparse Priming Representations, and the critical importance of comprehensive testing approaches. Their experience demonstrates both the potential and challenges of operationalizing LLMs in a large-scale enterprise environment.