ZenML Blog

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
LLMOps
9 mins

LLMOps Is About People Too: The Human Element in AI Engineering

We explore how successful LLMOps implementation depends on human factors beyond just technical solutions. It addresses common challenges like misaligned executive expectations, siloed teams, and subject-matter expert resistance that often derail AI initiatives. The piece offers practical strategies for creating effective team structures (hub-and-spoke, horizontal teams, cross-functional squads), improving communication, and integrating domain experts early. With actionable insights from companies like TomTom, Uber, and Zalando, readers will learn how to balance technical excellence with organizational change management to unlock the full potential of generative AI deployments.
Read post
LLMOps
15 mins

Streamlining LLM Fine-Tuning in Production: ZenML + OpenPipe Integration

The OpenPipe integration in ZenML bridges the complexity of large language model fine-tuning, enabling enterprises to create tailored AI solutions with unprecedented ease and reproducibility.
Read post
LLMOps
6 mins

Building a Pipeline for Automating Case Study Classification

Can automated classification effectively distinguish real-world, production-grade LLM implementations from theoretical discussions? Follow my journey building a reliable LLMOps classification pipeline—moving from manual reviews, through prompt-engineered approaches, to fine-tuning ModernBERT. Discover practical insights, unexpected findings, and why a smaller fine-tuned model proved superior for fast, accurate, and scalable classification.
Read post
LLMOps
8 mins

Query Rewriting in RAG Isn’t Enough: How ZenML’s Evaluation Pipelines Unlock Reliable AI

Are your query rewriting strategies silently hurting your Retrieval-Augmented Generation (RAG) system? Small but unnoticed query errors can quickly degrade user experience, accuracy, and trust. Learn how ZenML's automated evaluation pipelines can systematically detect, measure, and resolve these hidden issues—ensuring that your RAG implementations consistently provide relevant, trustworthy responses.
Read post
ZenML
5 mins

Chat With Your ML Pipelines: Introducing the ZenML MCP Server

Discover the new ZenML MCP Server that brings conversational AI to ML pipelines. Learn how this implementation of the Model Context Protocol allows natural language interaction with your infrastructure, enabling query capabilities, pipeline analytics, and run management through simple conversation. Explore current features, engineering decisions, and future roadmap for this timely addition to the rapidly evolving MCP ecosystem.
Read post

Newsletter Edition #12 - Why Top Teams Are Replacing AI Agents (and What They're Choosing Instead)

Our monthly roundup: Hamza visits the US, a new course built on ZenML and why workflows are better than autonomous agents!
Read post

New Features: Dashboard Upgrades, Various Bugfixes and Improvements, Documentation Updates and More!

ZenML 0.75.0 introduces dashboard enhancements that allow users to create and update stack components directly from the dashboard, along with improvements to service connectors, model artifact handling, and documentation. This release streamlines ML workflows with better component management capabilities, enhanced SageMaker integration, and critical fixes for custom flavor components and sorting logic.
Read post
MLOps
3 mins

ZenML: Your Open-Source Path Forward After cnvrg.io

Learn how to migrate from cnvrg.io to ZenML's open-source MLOps framework. Discover a sustainable alternative before Intel Tiber AI Studio's 2025 end-of-life. Get started with your MLOps transition today.
Read post
MLOps
6 mins

Understanding the AI Act: February 2025 Updates and Implications

The EU AI Act, now partially in effect as of February 2025, introduces comprehensive regulations for artificial intelligence systems with significant implications for global AI development. This landmark legislation categorizes AI systems based on risk levels - from prohibited applications to high-risk and limited-risk systems - establishing strict requirements for transparency, accountability, and compliance. The Act imposes substantial penalties for violations, up to €35 million or 7% of global turnover, and provides a clear timeline for implementation through 2027. Organizations must take immediate action to audit their AI systems, implement robust governance infrastructure, and enhance development practices to ensure compliance, with tools like ZenML offering technical solutions for meeting these regulatory requirements.
Read post
Oops, there are no matching results for your search.

Start your new ML Project today with ZenML Pro

Join 1,000s of members already deploying models with ZenML.