Podcast: From Academia to Industry with Johnny Greco
This week I spoke with Johnny Greco, a data scientist working at Radiology Partners. Johnny transitioned into his current work from a career as an academic — working in astronomy — where also worked in the open-source space to build a really interesting synthetic image data project.
AWS MLOps Made Easy: Integrating ZenML for Seamless Workflows
Machine Learning Operations (MLOps) is crucial in today's tech landscape, even with the rise of Large Language Models (LLMs). Implementing MLOps on AWS, leveraging services like SageMaker, ECR, S3, EC2, and EKS, can enhance productivity and streamline workflows. ZenML, an open-source MLOps framework, simplifies the integration and management of these services, enabling seamless transitions between AWS components. MLOps pipelines consist of Orchestrators, Artifact Stores, Container Registry, Model Deployers, and Step Operators. AWS offers a suite of managed services, such as ECR, S3, and EC2, but careful planning and configuration are required for a cohesive MLOps workflow.
Run your steps on the cloud with Sagemaker, Vertex AI, and AzureML
With ZenML 0.6.3, you can now run your ZenML steps on Sagemaker, Vertex AI, and AzureML! It’s normal to have certain steps that require specific infrastructure (e.g. a GPU-enabled environment) on which to run model training, and Step Operators give you the power to switch out infrastructure for individual steps to support this.