Weights & Biases presents a comprehensive case study of transforming their documentation chatbot Wandbot from a monolithic system into a production-ready microservices architecture. The transformation involved creating four core modules (ingestion, chat, database, and API), implementing sophisticated features like multilingual support and model fallback mechanisms, and establishing robust evaluation frameworks. The new architecture achieved significant metrics including 66.67% response accuracy and 88.636% query relevancy, while enabling easier maintenance, cost optimization through caching, and seamless platform integration. The case study provides valuable insights into practical LLMOps challenges and solutions, from vector store management to conversation history handling, making it a notable example of scaling LLM applications in production.