Swiggy, a major food delivery platform in India, implemented a novel two-stage fine-tuning approach for language models to improve search relevance in their hyperlocal food delivery service. They first performed unsupervised fine-tuning using historical search queries and order data, followed by supervised fine-tuning with manually curated query-item pairs. The solution leverages TSDAE and Multiple Negatives Ranking Loss approaches, achieving superior search relevance metrics compared to baseline models while meeting strict latency requirements of 100ms.