The combination of ZenML and Neptune can streamline machine learning workflows and provide unprecedented visibility into experiments. ZenML is an extensible framework for creating production-ready pipelines, while Neptune is a metadata store for MLOps. When combined, these tools offer a robust solution for managing the entire ML lifecycle, from experimentation to production. The combination of these tools can significantly accelerate the development process, especially when working with complex tasks like language model fine-tuning. This integration offers the ability to focus more on innovating and less on managing the intricacies of your ML pipelines.
Explore how ZenML, an MLOps framework, can be used with large language models (LLMs) like GPT-4 to analyze and version data from databases like Supabase. In this case study, we examine the you-tldr.com website, showcasing ZenML pipelines asynchronously processing video data and generating summaries with GPT-4. Understand how to tackle large language model limitations by versioning data and comparing summaries to unlock your data's potential. Learn how this approach can be easily adapted to work with other databases and LLMs, providing flexibility and versatility for your specific needs.