ZenML 0.71.0 features the Modal Step Operator for fast, configurable cloud execution, dynamic artifact naming, and enhanced visualizations. It improves API token management, dashboard usability, and infrastructure stability while fixing key bugs. Expanded documentation supports advanced workflows and big data management.
ZenML 0.68.0 introduces several major enhancements including the return of stack components visualization on the dashboard, powerful client-side caching for improved performance, and a streamlined onboarding process that unifies starter and production setups. The release also brings improved artifact management with the new `register_artifact` function, enhanced BentoML integration (v1.3.5), and comprehensive documentation updates, while deprecating legacy features including Python 3.8 support.
This release incorporates updates to the SageMaker Orchestrator, DAG Visualizer, and environment variable handling. It also includes Kubernetes support for Skypilot and an updated Deepchecks integration. Various other improvements and bug fixes have been implemented across different areas of the platform.
ZenML's latest release 0.66.0 adds support for Python 3.12, removes some dependencies for a slimmer Client package and adds the ability to view all your pipeline runs in the dashboard.
ZenML's latest release 0.65.0 enhances MLOps workflows with single-step pipeline execution, AzureML SDK v2 integration, and dynamic model versioning. The update also introduces a new quickstart experience, improved logging, and better artifact handling. These features aim to streamline ML development, improve cloud integration, and boost efficiency for data science teams across local and cloud environments.
ZenML's latest release 0.64.0 streamlines MLOps workflows with notebook integration for remote pipelines, optimized Docker builds, AzureML orchestrator support, and Terraform modules for cloud stack provisioning. These updates aim to speed up development, ease cloud deployments, and improve efficiency for data science teams.
Recent releases of ZenML’s Python package have included a better way to deploy machine learning infrastructure or stacks, new annotation tool integrations, an upgrade of our Pydantic dependency and lots of documentation improvements.