As Large Language Models (LLMs) revolutionize software development, the challenge of ensuring their reliable performance becomes increasingly crucial. This comprehensive guide explores the landscape of LLM evaluation, from specialized platforms like Langfuse and LangSmith to cloud provider solutions from AWS, Google Cloud, and Azure. Learn how to implement effective evaluation strategies, automate testing pipelines, and choose the right tools for your specific needs. Whether you're just starting with manual evaluations or ready to build sophisticated automated pipelines, discover how to gain confidence in your LLM applications through robust evaluation practices.
In the AI world, fine-tuning Large Language Models (LLMs) for specific tasks is becoming a critical competitive advantage. Combining Lightning AI Studios with ZenML can streamline and automate the LLM fine-tuning process, enabling rapid iteration and deployment of task-specific models. This approach allows for the creation and serving of multiple fine-tuned variants of a model, with minimal computational resources. However, scaling the process requires resource management, data preparation, hyperparameter optimization, version control, deployment and serving, and cost management. This blog post explores the growing complexity of LLM fine-tuning at scale and introduces a solution that combines the flexibility of Lightning Studios with the automation capabilities of ZenML.
Master cloud-based LLM finetuning: Set up infrastructure, run pipelines, and manage experiments with ZenML's Model Control Plane for Microsoft's latest Phi model.
Master cloud-based LLM finetuning: Set up infrastructure, run pipelines, and manage experiments with ZenML's Model Control Plane for Meta's latest Llama model.
OpenAI's Batch API allows you to submit queries for 50% of what you'd normally pay. Not all their models work with the service, but in many use cases this will save you lots of money on your LLM inference, just so long as you're not building a chatbot!