The combination of ZenML and Neptune can streamline machine learning workflows and provide unprecedented visibility into experiments. ZenML is an extensible framework for creating production-ready pipelines, while Neptune is a metadata store for MLOps. When combined, these tools offer a robust solution for managing the entire ML lifecycle, from experimentation to production. The combination of these tools can significantly accelerate the development process, especially when working with complex tasks like language model fine-tuning. This integration offers the ability to focus more on innovating and less on managing the intricacies of your ML pipelines.
Cloud Composer (Airflow) vs Vertex AI (Kubeflow): How to choose the right orchestration service on GCP based on your requirements and internal resources.
Taking large language models (LLMs) into production is no small task. It's a complex process, often misunderstood, and something we’d like to delve into today.
Seamlessly automating the journey from training to production, ZenML's new NLP project template offers a comprehensive MLOps solution for teams deploying Huggingface models to AWS Sagemaker endpoints. With its focus on reproducibility, scalability, and best practices, the template simplifies the integration of NLP models into workflows, complete with lineage tracking and various deployment options.
Deploying Huggingface models to AWS Sagemaker endpoints typically only requires a few lines of code. However, there's a growing demand to not just deploy, but to seamlessly automate the entire flow from training to production with comprehensive lineage tracking. ZenML adeptly fills this niche, providing an end-to-end MLOps solution for Huggingface users wishing to deploy to Sagemaker.